doi:10.3788/gzxb20164508.0829003

角度组合对多角度动态光散射测量的影响

王雪敏^{1a},申晋^{1a,1b},朱新军²,王雅静^{1a,1b},孙贤明^{1a,1b},尹丽菊^{1a,1b} (1山东理工大学 a 电气与电子工程学院; b 光电技术研究所,山东 淄博 255049) (2 天津工业大学 电气工程与自动化学院,天津 300387)

摘 要:针对多角度动态光散射中角度组合对颗粒粒度分布测量的影响,对5组模拟的双峰分布颗粒体系(114/457 nm, 202/800 nm, 307/541 nm, 433/721 nm 和 600/900 nm)分别选取3、4、5 和 6 个散射角,采用不同角度组合进行测量. 粒度反演结果表明,在选取同样数量散射角条件下,不同的角度组合会 得到不同的测量结果. 当选取的各散射角对应的 Mie 散射光强差异显著,特别是对应光强值包含了 Mie 散射光强曲线的极大值和极小值点时,测量结果更准确. 采用标准聚苯乙烯乳胶颗粒进行的测量实验, 实验结果与反演结果一致. 这种角度组合影响的原因在于,随着散射角的增多,得到的颗粒粒度信息也 相应增加,但只有增加的散射角所对应的散射光强显著不同时,才会较多地增加颗粒粒度信息,从而改 善测量效果;否则,增加的信息会被增加的角度校准噪声所抵消.

关键词:动态光散射; 粘度分布; 颗粒测量; 散射角; 散射光强; 散射参数; 反演

中图分类号:0436;0439 **文献标识码**:A **文章编号**:1004-4213(2016)08-0829003-9

Influence of Angular Combination on Multiangle Dynamic Light Scattering Measurement

WANG Xue-min^{1a}, SHEN Jin^{1a,1b}, ZHU Xin-jun², WANG Ya-jing^{1a,1b}, SUN Xian-ming^{1a,1b}, YIN Li-ju^{1a,1b}

 (1 a School of Electrical and Electronic Engineering; b Institute of Optoelectronic Technology, Shandong University of Technology, Zibo, Shandong 255049, China)
 (2 School of Electrical Engineering and Automation, Tianjin Polytechnic University, Tianjin 300387, China)

Abstract: In order to analyse the influence of the angular combination on the dynamic light scattering measurement, five groups of simulated bimodal particle system (114/457 nm, 202/800 nm, 307/541 nm, 433/721 nm and 600/900 nm) were measured at different combinations of three, four, five and six scattering angles respectively. The inversion results show that, the different angular combinations with the same numbers of scattering angles give different measuring results. When Mie-scattering intensitys corresponded to the selected angles are different significantly, especially including the maximum and minimum points, the more accurate measurement results can be gotten. The results were verified by the experimental results of a dilute bimodal suspension of polystyrene latex standard spheres. The reason for the combination influence is that the information of particle sizing is added as the number of scattering angle increases, but only when the added angles located at the points of Mie-scattering intensity different significantly would provide more information about particle sizing. However, if improper angles are choose, the benefits from increase of angles would be offset by the losses caused by angle calibration noise.

Key words: Dynamic light scattering; Particle size distribution; Particle size measurement; Scattering angle; Scattered light intensity; Scattering parameters; Inversion OCIS Codes: 290.3200;290.5820;120.5820;300.6500

基金项目:国家自然科学基金(No. 61205191)和山东省自然科学基金(Nos. ZR2014FL027, ZR2015FL034)资助 第一作者:王雪敏(1990一),女,硕士研究生,主要研究方向为动态光散射测量技术.Email:wangxuemin0910@126.com 导师(通讯作者):申晋(1962一),男,教授,博士,主要研究方向为光电精密测试技术.Email:shenjin@sdut.edu.cn 收稿日期:2016-05-09;录用日期:2016-07-12

0 引言

与单角度动态光散射(Dynamic Light Scattering, DLS)相比,多角度动态光散射(Multiangle Dynamic Light Scattering, MDLS)技术^[1-5]能够弥补单角度动态 光散射测量信息不足的缺点,提高了粒径分布的测量 准确性.1987年,Cummins和 Staples^[6]首次采用两个 散射角的动态光散射技术,并反演出了双峰颗粒粒度 分布,证明多角度动态光散射技术相比于单角度测量 在反演双峰粒度分布时的优势. 1995年, Bryant 和 Thomas^[7]在不同的多角度测量中进行颗粒粒度分布 反演,证明了在宽范围选取散射角能得到比在窄范围 选取更加准确的颗粒粒度分布.2012年,刘晓艳、申晋 等^[8]分别对不同单峰和双峰模拟分布的颗粒采用1、3、 6和9个散射角度测量进行颗粒粒度分布反演,验证 了测量结果的准确性与散射角数量有关.2015年,高 珊珊,申晋等^[9]在加入角度校准噪声的情况下,对不同 单峰和双峰颗粒系进行颗粒粒度反演,结果表明,被测 颗粒粒径范围不同,散射角增多引起的粒度分布信息 增加也不一样.

本文采用小粒径(<300 nm)、中粒径(300~ 550 nm)和大粒径(>550 nm)的5组不同双峰颗粒体 系,分别用3、4、5和6个散射角进行模拟测量,对不同 测量条件下模拟测量的反演结果进行了分析.并采用 双峰数量比为2:1的标准聚苯乙烯颗粒,在6个散射 角不同组合条件下进行实测数据反演.

1 MDLS 理论

在多角度动态光散射测量中,需要选取多个散射 角测量光强自相关函数^[10],其表达式为

$$g_{\theta_{j}}^{(2)}(\tau_{j}) = 1 + \beta |g_{\theta_{j}}^{(1)}(\tau_{j})|^{2} r = 1, 2, \cdots, R$$

$$\coprod j = 1, 2, \cdots, M$$
(1)

式中,M为相关通道数,R为散射角度总个数, θ_r 为选 取的散射角度, τ_j 为延迟时间, β 为相干因子, $g_{\theta_i}^{(1)}(\tau_j)$ 为散射角 θ_r 处的离散电场自相关函数^[11],即

$$\Omega_0(\theta_r) = \frac{k_{\rm B}T}{3\pi\eta} q^2 \tag{3}$$

 k_{θ_i} 是散射角度为 θ_r 时电场自相关函数的权重系数,可 通过散射光强值或自相关函数基线值求得^[12], $f(D_i)$ 为颗粒粒度分布, $C_{I,\theta_i}(D_i)$ 是粒度为 D_i 的颗粒在散射 角 θ_r 处 Mie散射系数, 可通过 Mie理论计算^[13-14], D_i 为颗粒粒度.式(3)中, $k_{\rm B}$ 为波兹曼常数,T为绝对温度, η 为粘度系数,q为散射矢量,其表达式为

$$q = \frac{4\pi n}{\lambda_0} \sin(\frac{\theta_r}{2}) \tag{4}$$

式中 *n* 为溶液折射率,λ。为激光在真空中的波长.式 (2)可简写为

 $g_{\theta}^{(1)} = A_{\theta} f \tag{5}$

式中, $g_{\ell}^{(1)}$ 为多角度动态光散射测量数据,f为 $f(D_i)$, 是待求的颗粒粒度分布, $A_{\ell} = k_{\ell} \sum_{i=1}^{N} \exp(-\Omega_0(\theta_r)\tau_i/D_i)C_{I,\ell}(D_i)$ 为系数矩阵,该矩阵为典型的病态矩阵, 为获得稳定近似解,需要对式(5)实施正则化^[15].

2 实验模拟

采用 5 组双峰分布的颗粒体系(114/457 nm、202/ 800 nm、307/541 nm、433/721 nm 和 600/900 nm),分 別通过 3、4、5 和 6 个不同散射角组合进行模拟测量, 并对测量求取的相关函数分别加入水平为 0.001、0.01 和 0.1 的噪声,反演算法采用正则化算法,通过 L-曲 线^[16-17]选择正则参数.模拟实验条件为:分散介质折射 率 n=1.33,入射光在真空中的波长 $\lambda_0 = 632.8$ nm,绝 对温度 T=298.15K,介质粘度系数 $\eta=0.89 \times 10^{-9}$ g/ nms.在实验模拟中,采用两个 Johnson's SB 函数^[18]联 合模拟双峰颗粒粒度分布,即

$$f(D) = a_0 \frac{D}{\sqrt{2\pi} (D_{\max} - D_{\min})} (t(1-t))^{-1} \times \exp(-0.5(\mu + \sigma \ln(t/1-t)))^2 + a_1 \frac{D_1}{\sqrt{2\pi} (D_{\max} - D_{\min})} (t_1(1-t_1))^{-1} \times \exp(-0.5(\mu + \sigma_1 \ln(t_1/1-t_1)))^2$$
(6)

式中, $t = (D - D_{min})/(D_{max} - D_{min}), t_1 = (D_1 - D_{min})/(D_{max} - D_{min}), \mu, \sigma, \mu_1, \sigma_1$ 分别为粒度分布参数, $t \approx t_1$ 代表归一化的颗粒粒度, $D_{max} \approx D_{min}$ 分别代表粒度分布 中最大和最小的颗粒粒度, $a_0 \approx a_1$ 是峰值数量比的系数.为了表征反演的颗粒粒度分布的准确性,引入性能误差(V)和峰值误差(Error),即

$$V = \left\| \sum_{i=1}^{N} \left[f(D_i) - f_1(D_i) \right] \right\|$$

$$Free = \frac{\left| f - f_i \right|}{\left| f_i \right|}$$
(8)

$$d(f) = \frac{f}{f}$$

式(7)中 $f(D_i)$ 、 $f_1(D_i)$ 分别是模拟和反演的粒径分

布.式(8)中 f、f;分别为模拟和反演的颗粒粒度分布 峰值处的粒径,性能误差和峰值误差值越小,表明反演 得到的颗粒粒度分布准确性越高.5种双峰分布的粒 度分布范围和采样点数如表 1.

表 1 五种双峰分布的粒度分布范围和采样点数

 Table 1
 Particle size range and sampling points for five groups of bimodal simulation PSD

•	Size/nm	Size range for simulation/nm	Points
-	114/457	0.01~600.01	100
	202/800	0.01~1000.01	100
	307/541	100.01~700.01	100
	433/721	200.01~1000.01	100
	600/900	400.01~1200.01	100

图 1~5 分别是 114/457 nm、202/800 nm、307/541 nm、433/721 nm 和 600/900 nm 模拟双峰分布的反演 结果.其中,"True PSD"表示模拟的颗粒粒度分布, "Noise free"、"0.001"、"0.01"和"0.1"表示噪声水平为 "0"、"0.001"、"0.01"和"0.1"时测得的颗粒粒度分布. 采用的噪声模型为

 $y_{\theta_{i}}^{(2)}(\tau_{j}) = g_{\theta_{i}}^{(2)}(\tau_{j}) + \delta \epsilon$ (9) 式中, δ 为噪声水平, ϵ 为在 0 到 1 之间的随机数, 为加 噪声后的光强自相关函数.

表 2~6 分别是对应 5 组双峰分布的模拟粒度值、 反演粒度值、峰值误差和性能误差值.其中,"0"、 "0.001"、"0.01"和"0.1"分别表示在噪声水平为"0"、 "0.001"、"0.01"和"0.1"时测得的颗粒粒度分布的各 种参数值.从图 1 和表 2 可以看出,对于 114/457 nm 双峰分布,在散射角数量为 3,当散射角组合为(a)和 (d)时,在不同水平的噪声情况下都能很好地反演出双 峰分布,性能误差小于 0.11 和 0.16. 在散射角组合为 (b)和(c)时,在没有噪声和噪声水平为 0.001 和 0.01 时可以反演出双峰分布,但峰值误差都明显增大,当噪 声水平增加到 0.1 时,性能误差增加到 0.167 和 0.214.由图 2 和表 3 可以看出,对于 202/800 nm 双峰 分布体系,在散射角数量同样为 4,角度选取范围为 90°的情况下,四个不同角度组合情况下都能够反演出 双峰分布,散射角组合为(a)和(d)时,在加入不同水平 噪声的情况下,两个峰值处相对误差均小于 0.14 和 0.22,性能误差均小于 0.09 和 0.08.角度组合为(b)和 (c)时,各噪声水平下的相对误差和性能误差都明显增 大,当噪声水平增加到 0.1 时,两者的峰值误差增加到 0.980 和 1.079,性能误差增加到 0.186 和 0.933.

从图 3 和表 4 可以看出,对于 307/541 nm 双峰分 布体系,在散射角个数为 4 时,在当角度组合为(a)和 (d)时,在各个噪声水平下都能给出双峰分布,不同噪 声水平下两个峰值处的峰值误差均小于 0.14 和 0.06, 性能误差小于等于 0.02 和 0.03.在角度组合为(b)时, 仅在不加噪声的情况下可以反演出双峰分布,各噪声 水平下的性能误差均大于 0.13.在角度组合为(c)时, 各噪声水平下只能反演出一个峰,性能误差都在 0.2 以上.由图 4 和表 5 可以看出,对于 433/721 nm 双峰 分布体系,散射角数量为 5 时,在四个角度组合下都可 以反演出双峰分布,在散射角组合为(b)时,反演得到

图 1 114/457 nm 双峰分布颗粒系在 3 个角的不同角度组合下分别加入不同水平噪声的反演结果 Fig. 1 Inversion results of 114/457 nm bimodal simulation particle size distribution at different combination for 3 scattering angles with different level of noise

表 2 114/457 nm 模拟双峰分布的模拟粒度值、反演粒度值、性能误差和峰值误差值 Table 2 Simulated and estimated particle size, relative errors between them and the performance errors of 114/457 nm bimodal simulation particle size distribution

Size/nm	Noise level	30°,70°,110°			50°,90°,130°			10°,50°,90°			15°,45°,110°		
		Peak value/nm	Error	V	Peak value/nm	Error	V	Peak value/nm	Error	V	Peak value/nm	Error	V
	0	145/457	0.281/0	0.053	225/440	0.974/0.037	0.168	58/448	0.491/0.020	0.167	130/449	0.140/0.018	0.023
114/457	0.001	83/457	0.272/0	0.067	210/440	0.842/0.037	0.173	42/448	0.632/0.020	0.193	145/449	0.272/0.018	0.113
114/457	0.01	90/457	0.211/0	0.080	210/400	0.842/0.125	0.188	42/448	0.632/0.020	0.195	193/449	0.693/0.018	0.132
	0.1	137/457	0.202/7	0.102	-/417	-/0.088	0.267	-/-	-/-	0.214	209/449	0.833/0.018	0.155

for 4 scattering angles with different level of noise

表 3 202/800 nm 模拟双峰分布的模拟粒度值、反演粒度值、性能误差和峰值误差值 Table 3 Simulated and estimated particle size, relative errors between them and the performance errors of 202/800 nm bimodal simulation particle size distribution

						•							
C: /	N. 1 1	10°,30°,70°,100°			30°,60°,90°,120°			20°,6	30°,80°,110°		50°,70°,100°,140°		
Size/ nm	INOISE IEVEI	Peak value/nm	Error	V	Peak value/nm	Error	V	Peak value/nm	Error	V	Peak value/nm	Error	V
202/800	0	205/793	0.015/ 0.009	0.059	361/805	0.787/0.006	0.175	325/793	0.609/0.009	0.348	170/793	0.158/0.009	0.073
	0.001	205/793	0.015/ 0.009	0.059	360/805	0.782/0.006	0.175	300/793	0.485/0.009	0.315	158/793	0.218/0.009	0.068
	0.01	230/792	0.139/ 0.009	0.081	360/800	0.782/0	0.182	340/793	0.683/0.009	0.243	158/793	0.218/0.009	0.067
	0.1	230/780	0.139/ 0.025	0.082	400/817	0.980/0.021	0.186	420/793	1.079/0.009	0.933	217/800	0.074/0	0.055

的双峰分布的峰值误差和性能误差明显增大,在没加 入噪声时,峰值误差增加到 0.055/0.083,性能误差增 加到 0.07. 散射角度组合为(c)时,各噪声的水平下都 给出了双峰分布,但当噪声水平增加到 0.1 时,峰值误 差增加到 0.166/0.133,性能误差增加到 0.219.由图 5 和表 6 可以看出,对于 600/900 nm 双峰分布体系,在

800

800

1200

1200

散射角个数为6时,在角度组合为(a)和(d)的情况下, 反演结果接近"真实"颗粒粒径分布,在不同噪声水平 下两个峰值处的相对误差均小于0.001和0.01,性能 误差均小于0.06和0.07.而当角度组合为(c)时只能 分辨出 800 nm 的峰值,不同噪声水平下的性能误差均 大于 0.09. 在散射角度组合为(b)时,在 0.1 噪声水平 下出现了虚假峰,且性能误差增加到 0.178.

图 3 307/541 nm 双峰分布颗粒系在 4 个角的不同角度组合下分别加入不同水平噪声的反演结果 Fig. 3 Inversion results of 307/541nm bimodal simulation particle size distribution at different combination for 4 scattering angles with different level of noise

表 4 307/541 nm 模拟双峰分布的模拟粒度值、反演粒度值、性能误差和峰值误差值

 Table 4
 Simulated and estimated particle size, relative errors between them and the performance errors of 307/541 nm bimodal simulation particle size distribution

Size / nm	Noise level	30°,60°,90°,120°			20°,50°,80°,110°			30°,70°,110°,150°			20°,70°,90°,130°		
Size/ nin	INOISE IEVEI	Peak value/nm	Error	V	Peak value/nm	Error	V	Peak value/nm	Error	V	Peak value/nm	Error	V
	0	297/515	0.033/ 0.048	0.003	316/541	0.029/0	0.136	407/-	-/-	0.114	299/523	0.026/0.033	0.020
	0.001	297/515	0.033/ 0.048	0.004	316/-	-/-	0.153	407/-	-/-	0.216	289/514	0.059/0.050	0.028
307/541	0.01	297/515	0.033/ 0.048	0.020	307/-	-/-	0.141	290/-	-/-	0.218	299/523	0.026/0.033	0.012
	0.1	297/470	0.033/ 0.131	0.020	343/-	-/-	0.249	343/-	-/-	0.209	309/540	0.007/0.002	0.013

由图1~图5和表2~表6可以看出,对于含300 nm 以上的各种不同的双峰分布颗粒体系,角度组合影响 颗粒粒度分布测量的准确性,在同样或不同角度选取 范围内,选取同样数量但不同组合的散射角时得到的 反演结果差别很大.上述结果可以从 Mie 理论^[9]得到 解释,不同粒径颗粒 Mie 散射光强随散射角变化曲线 如图 6.300 nm 以上颗粒的散射光强随散射角变化显 著,增多散射角数量无疑会增加测量信息,在洗取同样 数量散射角度时,取到使得光强变化显著的角度值,特 别是取值包含光强变化曲线的极大和极小值点时,与 取到对应散射光强无显著变化的散射角情况相比,会 得到更多的粒度信息.由图 6 可以看出,对于 114/ 457 nm的双峰分布体系,457 nm 颗粒的散射光强曲线 在 110°接近最小值,图 1(a)和(d)中的角度组合取到了 光强曲线的最小值点,给出了更为准确的双峰分布.对 于 307/541 nm 的双峰分布体系,541 nm颗粒的散射光 强曲线在 90°接近最小值,所选角度组合包含 90°时取 到的光强值变化显著.对于 202/800 nm 的双峰分布体 系,图 2(a)和(d)散射角组合取到了光强变化曲线的的 极大值和极小值点,给出了性能误差和峰值误差都相 对较小的双峰分布.对于 433/721 nm 的双峰分布体 系,433 nm 颗粒的散射光强曲线分别在 60°、90°和140° 有极值点,721 nm 颗粒的散射光强曲线在 120°时光强 值最小,在图 4(a)和(d)散射角度组合中,反演结果更 接近"真实"双峰分布.同样,对于 600/900 nm 的双峰 分布体系,图 5(a)和(d)角度组合取到了 600 nm 和 900 nm 光强变化曲线的极值点,也给出了与"真实"双 峰分布同样的反演结果.

图 4 433/721 nm 双峰分布颗粒系在 5 个角的不同角度组合下分别加入不同水平噪声的反演结果

Fig. 4 Inversion results of 433/721 nm bimodal simulation particle size distribution at different combination for 5 scattering angles with different level of noise

表 5 433/721 nm 模拟双峰分布的模拟粒度值、反演粒度值、性能误差和峰值误差值 Table 5 Simulated and estimated particle size, relative errors between them and the performance errors of 433/721 nm bimodal simulation particle size distribution

Size / nm	Noise level	30°,60°,90°,120°,150°			20°,60°,100°,140°,180°			10°,30°,50°,80°,110°			20°,60°,90°,120°,140°		
Size/ IIII		Peak value/nm	Error	V	Peak value/nm	Error	V	Peak value/nm	Error	V	Peak value/nm	Error	V
433/721	0	445/733	0.023/ 0.017	0.005	457/781	0.055/0.083	0.070	481/781	0.111/0.083	0.114	299/523	0.026/0.033	0.004
	0.001	445/733	0.023/ 0.017	0.006	469/781	0.083/0.083	0.070	481/793	0.111/0.100	0.219	289/514	0.059/0.050	0.005
	0.01	445/733	0.023/ 0.017	0.009	469/781	0.083/0.083	0.070	469/780	0.083/0.082	0.213	299/523	0.026/0.033	0.009
	0.1	445/745	0.023/ 0.033	0.011	469/781	0.083/0.083	0.071	505/817	0.166/0.133	0.221	309/540	0.007/0.002	0.012

表 6 600/900 nm 模拟双峰分布的模拟粒度值、反演粒度值、性能误差和峰值误差值 Table 6 Simulated and estimated particle size, relative errors between them and the performance errors of 600/900 nm bimodal simulation particle size distribution

Cine / mm	Noise level	20°,40°,80°,100°,140°,160°			30°,60°,90°,120°,150°,180°			10°,40°,70	0°,100°,130°,1	60°	40°,60°,80°,100°,120°,160°		
Size/ nm		Peak value/nm	Error	V	Peak value/nm	Error	V	Peak value/nm	Error	V	Peak value/nm	Error	V
	0	595/897	0.008/ 0.003	0.032	-/897	-/0.003	0.098	310/897	0.483/0.003	0.164	589/911	0.018/0.012	0.064
600/000	0.001	595/897	0.008/ 0.003	0.031	-/883	-/0.019	0.094	310/897	0.483/0.003	0.162	575/911	0.042/0.012	0.058
000/900	0.01	589/897	0.008/ 0.003	0.031	-/897	-/0.003	0.094	310/897	0.483/0.003	0.166	575/911	0.042/0.012	0.066
	0.1	603/905	0.005/ 0.006	0.056	-/-	-/-	0.097	-/-	-/-	0.178	575/911	0.042/0.012	0.067

3 实测结果及分析

为验证模拟测量结果,采用标准聚苯乙烯乳胶颗 粒进行多角度动态光散射测量实验,实验条件为:入射 光波长 λ_0 =632.8 nm,分散介质折射率 n=1.33,介质 粘度系数,颗粒样品保持恒定温度 T=298.15K,聚苯 乙烯标称颗粒粒度分别为(306±8)nm和(974±10)nm, 双峰数量比为2:1.光强相关函数的测量分别在6个 不同散射角组合条件下进行,反演算法采用正则化算 法,通过 L-曲线选择正则参数.不同散射角组合下的 颗粒粒度分布的反演结果如图 6,表 7 给出了真实颗粒 粒度、反演粒度值、峰值误差和性能误差值.在图 7 中, "True PSD"表示实验测得的颗粒粒度分布,"a"、"b"、 "c"分别表示在散射角度组合为"30°、40°、60°、80°、 100°、120°"、"30°、50°、70°、90°、110°、130°"和"30°、60°、 90°、110°、120°、130°"时测得的颗粒粒度分布,表 7 中, "True PSD"表示真实的颗粒粒度分布,通过高斯拟合 得到,"a"、"b"和"c"分别表示对应角度组合下经反演 得的颗粒粒度分布的参数值.

图 6 不同粒度的颗粒 Mie 散射光强随散射角变化曲线 Fig. 6 Light-scattering intensity variation for different particle sizes at different scattering angles

表 7 实验双峰分布的"真实"粒度值、估计粒度值、 峰值误差、性能误差和双峰数量比

Table 7 "True" particle size, estimated particle size, relative errors between them, performance errors and the number ratio of two peaks for the bimodal experimental particle-size distribution

- 图 7 306 nm 和 974 nm 双峰实验分布颗粒系在 6 个角的不同角度组合下的反演结果
- Fig. 7 Inversion results of 306 nm and 974 nm bimodal experimental particle size distribution at different combination for six scattering angles

从图 7 和表 7 可以看出,对于数量比为 2:1 的 306 nm 和 974 nm 的双峰分布颗粒体系,在 6 个散射 角度组合为"a"时,可以清晰给出双峰分布,两个峰的 峰值误差为 0.02 和 0.005,性能误差仅为 0.101,峰值 比为 1:57:1,接近真实的峰值比.而在散射角度组 合为"b"和"c"时,均出现了虚假的小峰,性能误差增加 到 0.137 和 0.244.从 306 和 974 nm 颗粒的 Mie 散射 光强随散射角变化曲线(图 8)可以看出,角度组合"a" 包含多个 974 nm 颗粒散射光强曲线的极大和极小值.

4 结论

本文对五组模拟的双峰颗粒体系(114/457 nm、 202/800 nm、307/541 nm、433/721 nm 和 600/900 nm) 分别选取3、4、5和6个散射角,采用不同角度组合进 行测量,颗粒粒度的反演结果表明,测量结果的准确性 不仅与测量角度的个数有关,而且与所选散射角组合 有关.在选取同样数量测量角的条件下,选取的各散射 角对应的 Mie 散射光强差异显著,特别是取值包括了 Mie 散射光强曲线的极大值和极小值点时,会得到更 为准确的测量结果.采用数量比为2:1的(306±8)nm 和(974±10)nm 聚苯乙烯标准颗粒的实测结果与反演 结果一致.对于大于 300 nm 以上的颗粒分布体系,由 于散射光具有更加明显的空间分布变化特征,测量角 度的增加会带来更多的粒径分布信息.然而,如果选取 的角度组合不当,角度增加为测量结果带来的"收益" 就不明显,甚至会被由于散射角增加引起的角度校准 噪声增加带来的"损失"所抵消,当角度增加不能带来 更多额外信息时,增加的角度校准噪声,反而会导致多 角度动态光散射测量差于单角度动态光散射测量的 结果.

参考文献

[1] VEGA J R, GUGLIOTTA L M, GONNALEZ V D, et al. Latex particle size distribution by dynamic light scattering: novel data processing for multiangle measurements [J]. Journal of Colloid & Interface Science, 2003, 261(1): 74-81.

- [2] LIU Xiao-yan, SHEN Jin, THOMAS J C, et al. Multiangle dynamic light scattering analysis using a modified Chahine method [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2012, 113(6): 489-497.
- [3] CLEMENTI L A, VEGA J R, GUGLIOTTA L M. Particle size distribution of multimodal polymer dispersions by multiangle dynamic light scattering. solution of the inverse problem on the basis of a genetic algorithm [J]. Particle & Particle Systems Characterization, 2012, 27(5-6): 146-157.
- [4] NAIIM M, BOUALEM A, FERRE C, et al. Multiangle dynamic light scattering for the improvement of multimodal particle size distribution measurements [J]. Soft Matter, 2015, 11(1): 28-32.
- [5] LI Lei, YANG Ke-cheng, Li Wei, et al. A recursive regularization algorithm for estimating the particle size distribution from multiangle dynamic light scattering measurements[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2016, 78:244-254.
- [6] CUMMINS P G, STAPLES E J. Particle size distributions determined by a multiangle analysis of photon correlation spectroscopy data[J]. Langmuir, 1987, 3(6): 1109-1113.
- [7] BRYANT G, THOMS J C. Improved particle size distribution measurements using multiangle dynamic light scattering [J]. Langmuir, 1995, 11(7): 2480-2485.
- [8] LIU Xiao-yan, SHEN Jin, ZHU Xin-jun, et al. Angular dependence of dynamic light scattering [J]. Acta Optica Sinica, 2012, 3(6): 0629002.
 刘晓艳,申晋,朱新军,等. 动态光散射技术的角度依赖性 [J]. 光学学报, 2012, 3(6): 0629002.
- [9] GAO Shan-shan, SHEN Jin, THOMS J C, et al. Effect of scattering angle error on particle size determination by multiangle dynamiclight scattering[J]. Applied Optics, 2015, 54(14): 2824-2831.
- [10] BUTTGEREIT R, MARTH M, ROTHS T. Some aspects of

data analysis of multi-angle dynamic scattering [J]. Macromolecular Symposia. 2000, **162**: 173-189.

- [11] LIU Xiao-yan, SHEN Jin, THOMS J C, et al. Multiangle dynamic light scattering analysis using angular intensity weighting determined iterative recursion. [J]. Applied Optics, 2012, 51(7): 846-854.
- [12] GAO Shan-shan, SHEN Jin, WANG Ya-jing, et al. Baseline error compensation of multi-angle dynamic light scattering technique[J]. Acta Optica Sinica, 2013, 32(6): s112002.
 高珊珊,申晋,王雅静,等. 多角度动态光散射技术中的基线 误差补偿[J]. 光学学报, 2013, 32(6): s112002.
- [13] CACHORRO V E, SALCEDO L L. New improvements for mie scattering calculations [J]. Journal of Electromagnetic Waves & Applications, 2001, 5(9): 913-926.
- [14] CAO Zhi-rui, FU Yue-gang, TIAN Hao. The impact for the air cleanliness to the precision of PST test [J]. Acta Photonica Sinica, 2016, 45(1):0112002.
 曹智蓉,付跃刚,田浩. 空气洁净度对点源透射比测试准确 度的影响[J]. 光子学报, 2016, 45(1):0112002.
- [15] ZHOU Xian, DU Hu-bing, WANG Jian-hua. Two frame phase shifting shadow Moiré using the method of varying light source[J]. Acta Photonica Sinica, 2016, 45(2): 0212003.
 周宪,杜虎兵,王建华. 二帧变换光源阴影莫尔技术研究 [J]. 光子学报, 2016, 45(2):0212003.
- [16] HANSEN P C. Analysis of discrete Ill-posed problems by means of the L-curve[J]. Siam Review, 2006, 34(4): 561-580.
- [17] YANG Xiao-li, HOFMANN R, DAPP R, et al. TV-based conjugate gradient method and discrete L-curve for few-view CT reconstruction of X-ray in vivo data[J]. Optics Express, 2015, 23(5):5368-87.
- [18] YU A B, STANDISH N. A Study of particle size distributions[J]. Powder Technology. 1990, 62(2): 101-118.

Foundation item: The National Natural Science Foundation of China (No. 61205191), The Natural Science Foundation of Shandong Province (Nos. ZR2014FL027, ZR2015FL034)